## CORRIGENDA

A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid

By J. Feng, D. D. Joseph, R. Glowinski and T. W. Pan<br>Journal of Fluid Mechanics, vol. 283 (1995), pp. 1-16

In transcribing formulae for computation in the above paper, we inadvertently replaced the velocity gradient $\boldsymbol{\nabla} \boldsymbol{u}$ with its transpose in the expression for the secondorder Rivlin-Ericksen tensor $\boldsymbol{A}_{2}$. A list of corrections follows.
(i) The direction of the secondary flow $u_{2}$ due to the normal stress perturbation is reversed and $u_{2}$ is in the same sense as $u_{1}$, the secondary motion caused by inertial perturbation.
(ii) The pressure field $p_{2}$ is qualitatively as depicted in figure 10 with high pressure on the left and right sides of the body and low pressure acting on its top and bottom. Pressure $p_{2}$ still produces the largest contribution to the torque $\boldsymbol{M}_{2}$.
(iii) The sense of the torque $\boldsymbol{M}_{2}$ is unchanged, though its magnitude is 2-5 times larger than originally reported. The range of unstable tilt angles (figure 7) is centred around $60^{\circ}$.

The flow induced by the torsional oscillations of an elliptic cylinder

By N. Riley and M. F. Wybrow

Journal of Fluid Mechanics, vol. 290 (1995), pp. 279-298

There is a transcription error which begins in equation (4.11a). $\dot{\bar{V}}(=\mathrm{d} \bar{V} / \mathrm{d} \xi)$ should be replaced by $\frac{1}{8} \dot{V}$ in (4.11a), (4.12), (4.19b) and (4.22c), and in the final paragraph on page 286 . None of the results presented is affected by the error.

